
© Copyright IBM Corporation 2005 Trademarks
Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 1 of 25

Take advantage of IBM Tivoli Directory Server's
LDAP Controls via Java and JNDI
Subtree deletion, password policy and more

Stefan Zoerner (szoerner@de.ibm.com)
Advisory IT Architect
IBM Germany

Skill Level: Intermediate

Date: 11 Jun 2005

Controls allow the LDAP protocol to be extended without changing the
protocol itself. This article provides information about some important controls
implemented by IBM Tivoli Directory Server. It describes what controls are,
and presents the API portion of JNDI which deals with them. With the help of
examples, starring the Tree Delete Control and the Password Policy Control, it
demonstrates how to employ controls in arbitrary Java components using JNDI.

Introduction
Like many other directory solutions, IBM Tivoli Directory Server supports LDAP, the
Lightweight Directory Access Protocol. Within LDAP v3, there are three standardized
ways to extend the functionality of a server:

1. SASL (Simple Authentication and Security Layer) Mechanisms
2. Extended Operations
3. Controls

The SASL framework (RFC 2222) allows support for different authentication
methods. An extended operation is used to define a completely new operation, while
a control modifies or enhances the behaviour of an existing one. The "Server-side
Sorting" control (RFC 2891) for instance is an extension of the search operation.
Normally, LDAP search results are returned by the server in an arbitrary order. The
control provides functionality to sort the members of a search result on the server
according to certain attributes, ascending or descending.

Using LDAP Controls

1.3.18...? (OIDs, Object Identifiers)
OIDs (object identifiers) are strings composed by dot-separated numbers.
They are constructed hierarchically; new OIDs are formed by appending

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
mailto:szoerner@de.ibm.com
http://www.ietf.org/rfc/rfc2222.txt
http://www.ietf.org/rfc/rfc2891.txt

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 2 of 25

a number to an existing OID. The permission to do so is given to the
organization or person that owns or originated the OID. The OID 1.3.18 for
instance belongs to IBM, which can allocate arbitrary OIDs below it. An OID
is assigned to each LDAP control (the same is true for several other objects
in a directory).

LDAP Controls may be sent as part of a request from a client to the server (request
control), or may be sent together with a result from the server back to the client
(response control). It is even possible to have both controls in a single operation.
The LDAP specification (RFC 2251) defines how to append controls to messages,
and which general information must be provided when doing so. The specification
does not contain specific controls. Their definition is normally provided by software
vendors, though some controls have become de-facto standards (or even RFCs),
and are supported by different products.

In addition to the OID (see sidebar "1.3.18...?") of the control and optional control
specific parameters, a client also indicates whether the functionality of the control
is critical or not. Normally an LDAP server does not support all controls. In the case
where the server does not implement a requested control, but the client marked
the control as critical, the whole operation fails. If the unsupported control is not
marked as critical, the server performs the operation as usual (i.e. without the added
functionality).

Each LDAP v3 compliant server publishes its supported controls via attribute values
of the Root DSE (Root DSA-specific Entry). The same is true for extended operations
and SASL mechanisms. In the case of controls, the attribute supportedcontrol is
used, its values can be fetched with an appropriate LDAP search. Listing 1 contains
such a search with the command line tool ldapsearch. Because the scope "base" is
used and no base DN is stated in the options, the Root DSE is returned. As a result
the tool prints out the OIDs of the supported controls of the addressed server.

Listing 1. Examine controls supported by an LDAP server
$ ldapsearch -h magritte -p 389 -s base "(objectclass=*)" supportedcontrol

supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.5
supportedcontrol=1.2.840.113556.1.4.473
supportedcontrol=1.2.840.113556.1.4.319
supportedcontrol=1.3.6.1.4.1.42.2.27.8.5.1
supportedcontrol=1.2.840.113556.1.4.805
supportedcontrol=2.16.840.1.113730.3.4.18
supportedcontrol=1.3.18.0.2.10.15
supportedcontrol=1.3.18.0.2.10.18
$

Controls supported by IBM Tivoli Directory Server

The examination of supported controls as shown above works for all standards-
compliant LDAP servers -- but of course the output will differ. Listing 1 displays the
result for an IBM Tivoli Directory Server 5.2. Table 1 introduces some of the controls.
The product documentation (e.g. Appendix F of "IBM Directory Server C-Client SDK

http://www.alvestrand.no/objectid/1.3.18.html
http://www.ietf.org/rfc/rfc2251.txt
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/admin_gd30.htm
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/progref15.htm

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 3 of 25

Programming Reference") provides information about all nine of them (OID, usage,
parameters). Tivoli Directory Server 6.0 provides even more controls.

Table 1. Selected controls supported by IBM Tivoli Directory Server
OID Name Short description of functionality

1.2.840.113556.1.4.805 Tree Delete Deletes an entire subtree of a container
entry. Defined in an expired Internet
Draft.

1.2.840.113556.1.4.319 Simple Paged Results Allows a client to control the rate at
which an LDAP server returns the
results of an LDAP search operation.
Defined in RFC 2696.

1.2.840.113556.1.4.473 Server-side Sorting Allows a client to receive search results
sorted by a list of criteria, where each
criterion represents a sort key. Defined
in RFC 2891.

2.16.840.1.113730.3.4.2 Manage DSAIT Allows manipulation of referral and
other special objects as normal objects.
Defined in RFC 3296.

1.3.6.1.4.1.42.2.27.8.5.1 Password policy Contains various warnings and errors
associated with password policy.
Defined in an expired Internet Draft.

In the following sections, some of the control functionality described above will be
used within Java components using JNDI.

Controls in the Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI) provides access to different kinds
of naming and directory services. It offers a common interface to connect to several
naming services, including RMI , CORBA, DNS, LDAP servers, file systems and even
the Windows registry. In order to integrate all these different services, and still remain
extensible, JNDI makes use of a plugin architecture with so-called service providers.
JNDI has been part of the Java 2 Standard Edition (J2SE) since version 1.3. It is
widely available with the runtime environment, and the natural choice to interact with
an LDAP server from Java. For older JDK versions (1.1 and above) it is possible to
download and install JNDI as a standard extension.

The classes and interfaces of JNDI reside in different packages. The javax.naming
package contains the fundamental interfaces for accessing naming services (the
Context interface is of particular importance). A name service permits the binding of
an object to a name (e.g. in DNS, an IP address is bound to a domain name). Once
bound, the object can be retrieved using the name. The javax.naming.directory
package provides classes and interfaces to access directory services. The primary
difference between naming services and directory services is that directory services
support reading and writing the attributes of bound objects. Directory services also
permit searches for objects whose attribute values meet certain criteria. Finally the
javax.naming.spi package includes classes and interfaces for the implementation of
service providers (spi stands for Service Provider Interface).

http://www.ietf.org/internet-drafts/draft-armijo-ldap-treedelete-03.txt
http://www.ietf.org/internet-drafts/draft-armijo-ldap-treedelete-03.txt
http://www.ietf.org/rfc/rfc2696.txt
http://www.ietf.org/rfc/rfc2891.txt
http://www.ietf.org/rfc/rfc3296.txt
http://www.ietf.org/internet-drafts/draft-behera-ldap-password-policy-09.txt
http://java.sun.com/products/jndi/
http://java.sun.com/j2se/
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/Context.html

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 4 of 25

Listing 2 presents a JNDI example which prints out the values of the attribute
supportedcontrol within the Root DSE of an arbitrary LDAP server. The output is
identical to Listing 1. Connection data (service provider, LDAP URL) is provided
when the InitialDirContext is created, in form of a Hashtable object. Alternatively,
the configuration can be done via the environment, e.g. with the file jndi.properties
(here is an example). The JNDI documentation and the JNDI Tutorial (see resources)
describe the different configuration options in detail.

Listing 2. Examine controls supported by an LDAP server (JNDI version)

package dw.samples.ldapcontrols;

import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.InitialDirContext;

public class ShowSupportedControls {

 public static void main(String[] args) throws NamingException {

 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL, "ldap://magritte:389/");

 InitialDirContext ctx = new InitialDirContext(env);
 Attributes attrs = ctx.getAttributes("", new String[] { "supportedcontrol" });

 Attribute attr = attrs.get("supportedcontrol");
 for (int i = 0; i < attr.size(); ++i) {
 System.out.println(attr.getID()+"="+attr.get(i));
 }
 }
}

The package javax.naming.ldap contains LDAP v3 specific features, including
interfaces which describe extended operations and controls. The fact that JNDI
provides extra classes and interfaces for LDAP in a specific package illustrates how
important the LDAP directory service is.

jndi.properties

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 5 of 25

Figure 1. Control portion of JNDI/LDAP

Figure 1 shows the classes and interfaces within JNDI, which deal with LDAP
controls. No surprise, the interface Control is essential. All request and response
controls are instances of classes, which implement Control. The method getId
returns the OID of the control. With isCritical a client can state whether the support
of the control is significant for processing. Finally getEncodedValue provides data
specific to the control, e.g. sort criteria in case of the "Server-side Sorting". The
value is ASN.1 BER encoded (see below). In the case of controls that don't have any
specific data or parameters, the method returns null.

An Example: Tree Delete Control

By default, LDAP compliant directories forbid the deletion of entries with children. It
is only permitted to delete leaf entries. However the Tree Delete Control provided
by IBM Tivoli Directory Server 5.2/6.0 extends the delete operation and allows the
removal of sub trees within a directory using a single delete request. In addition to
Tivoli Directory Server this control is also supported by Microsoft Active Directory.

When using JNDI methods to delete an entry within a directory, it is also not
possible to remove whole subtrees at once. This is an expected behaviour because
the underlying JNDI service provider uses LDAP. It is also possible to utilize
the described LDAP control within JNDI to overcome this limitation. In order to
demonstrate this, Listing 3 contains a Java class which implements the JNDI
interface Control (see above). The method getId provides the OID of the Tree
Delete Control. isCritical signals that the client considers the support of the control
as critical. This property could be made configurable, but in this case a constant

http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/Control.html

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 6 of 25

value is adequate. Since the definition of the control does not provide specific
parameters, the method getEncodedValue returns null.

Listing 3. A simple class for the Tree Delete Control

package dw.samples.ldapcontrols;

import javax.naming.ldap.Control;

public class TreeDeleteControl implements Control {

 public String getID() {
 return "1.2.840.113556.1.4.805";
 }

 public boolean isCritical() {
 return Control.CRITICAL;
 }

 public byte[] getEncodedValue() {
 return null;
 }
}

In order to use the control within a Java component the DirContext (the extension
of javax.naming.Context for directory services) must be replaced with the subclass
specialized for LDAP (javax.naming.ldap.LdapContext). The construction of the
corresponding InitialLdapContext in Listing 4 is done with parameters from the
environment to save space (default constructor, jndi.properties), take care that a
principal with appropriate privileges is used. The example demonstrates the use
of the control class of Listing 3 to remove an entry (leaf or subtree). The entry is
retrieved via a lookup call. Before deletion, an object of the class TreeDeleteControl
is attached to the context as a request control. It is therfore sent with the delete
operation (unbind) to the server and ensures that the complete subtree is removed,
i.e. the entry itself and all its potential subnodes.

If the addressed server does not implement the Tree Delete Control, an
OperationNotSupportedException is raised (LDAP error code 12, "unavailable
critical extension"). In case that the control has not been marked as critical, but the
entry to be removed has child entries, the deletion fails as well. The result would
be a ContextNotEmptyException (LDAP error code 66, "not allowed on non-leaf").
Because the behaviour for a non-critical control would differ on the same server
depending on whether the entry is a leaf or not, the control is marked as critical in this
case. This avoids a situation where the removal of an entry sometimes works and
sometimes fails.

Listing 4. Use of the Tree Delete Control

LdapContext ctx = new InitialLdapContext();

LdapContext entry = (LdapContext) ctx.lookup("ou=subtree");
entry.setRequestControls(new Control[] { new TreeDeleteControl() });
entry.unbind("");

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 7 of 25

Do we lose portability?

Not all LDAP servers support the Tree Delete Control (e.g. OpenLDAP, Sun Java
System Directory Server do not). In general, the use of vendor specific controls
raises the risk of creating client code which cannot be used uniformly with arbitrary
servers. We will use the Tree Delete Control to demonstrate an elegant detection of
the absence of functionality and the execution of alternate code in such a case. This
approach may be used as a blueprint for other controls as well.

As described above, the absence of a critical control causes the JNDI service
provider to throw a specific exception. In Listing 5, the exception is caught and
handled by invoking the deleteRecursively method, which implements the removal
of complete subtrees on its own with multiple delete requests. Before removing the
entry given as parameter, the method calls itself recursively for all immediate child
nodes. Therefore it is certain that all children have been removed, and the entry is a
leaf which can safely be deleted.

Listing 5. Use of the Tree Delete Control with fallback
package dw.samples.ldapcontrols;

import javax.naming.Binding;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;
import javax.naming.OperationNotSupportedException;
import javax.naming.ldap.Control;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.ldap.LdapContext;

public class PortableDeletion {

 public static void main(String[] args) throws NamingException {

 LdapContext ctx = new InitialLdapContext();
 LdapContext entry = (LdapContext) ctx.lookup("ou=subtree");
 entry.setRequestControls(new Control[] { new TreeDeleteControl() });
 try {
 entry.unbind("");
 System.out.println("Entry " + entry.getNameInNamespace()
 + " deleted");
 } catch (OperationNotSupportedException e) {
 entry.setRequestControls(new Control[0]);
 deleteRecursively(entry);
 }
 }

 public static void deleteRecursively(LdapContext entry)
 throws NamingException {

 NamingEnumeration enum = entry.listBindings("");
 while (enum.hasMore()) {
 Binding b = (Binding) enum.next();
 if (b.getObject() instanceof LdapContext) {
 deleteRecursively((LdapContext) b.getObject());
 }
 }
 entry.unbind("");
 System.out.println("Entry " + entry.getNameInNamespace() + " deleted");
 }
}

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 8 of 25

This approach preserves the portability of the client code, and in cases where
the Tree Delete Control is supported, such as Tivoli Directory Server and Active
Directory, the client may benefit from the server-specific (and normally more efficient)
operation.

Using Control classes provided by Sun's JNDI Provider
The implementation of the control class for the Tree Delete Control was rather
simple. This was primarily due to the fact that the control doesn't need any specific
data (the information that the control should be used is sufficient for the server to
perform the task). Furthermore no response control had to be implemented. If the
request control must transport specific data, or a response control returns results
which have to be evaluated and provided to the caller, the implementation is more
complex. Such an example will be described later on (Password Policy Control).

Fortunately it is not always necessary to create custom Java classes for an LDAP
control in order to benefit from it. In many cases existing implementations may
be used. This is particularly true for two very helpful controls related to searches
supported by IBM Tivoli Directory Server: Sorted Search and Paged Result Sets.
The first allows a client to receive search results sorted by a list of criteria (normally,
LDAP search results are provided by the server in arbitrary order). The second one
allows management of the amount of data returned from a search request.

JNDI/LDAP Booster Pack and J2SE 5.0 (Tiger)
A special class library for JNDI and LDAP has long been available from Sun on the
JNDI product page; the so-called JNDI/LDAP Booster Pack. It contains numerous
classes for controls of various directory vendors. Implementations for popular LDAP
extensions and helper classes for group operations in directories (e.g. adding and
removing members) are included as well. The Booster pack is therefore useful apart
from its support for LDAP controls as well.

The control classes in the Booster pack integrate seamlessly in the JNDI framework,
their implementation corresponds to the concepts shown above, and so does their
usage. It is only necessary to set the classpath, which must contain the relevant jar
file (ldapbp.jar, which stands for LDAP Booster Pack).

Some LDAP controls are so popular, it was decided to include the corresponding
Java classes directly in the Java 2 Standard Edition (J2SE), as part of the Tiger
release (version 5.0). Table 2 provides an overview of all LDAP controls which are
supported directly with Java classes in the Booster Pack and/or J2SE 5.0. Among
these are several controls, which are implemented by IBM Tivoli Directory Server 5.2
and 6.0, for instance "Proxied Authorization" and "Manage DSAIT".

Table 2. Overview of controls and control classes within Booster Pack and
J2SE
Short name OID Class in JNDI/LDAP

Booster Pack 1.0
Class in J2SE 5.0 (Tiger)

http://java.sun.com/products/jndi/

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 9 of 25

Authorization ID 2.16.840.1.113730.3.4.16 com.sun.jndi.ldap.ctl.
AuthorizationIDControl

-

Dir Sync 1.2.840.113556.1.4.841 com.sun.jndi.ldap.ctl.
DirSyncControl

-

Get Effective Rights 1.3.6.1.4.1.42.2.27.9.5.2 com.sun.jndi.ldap.ctl.
GetEffectiveRightsControl

-

Manage DSAIT 2.16.840.1.113730.3.4.2 - javax.naming.ldap.
ManageReferralControl

Password Expired 2.16.840.1.113730.3.4.4 com.sun.jndi.ldap.ctl.
PasswordExpiredResponseControl

-

Password Expiring 2.16.840.1.113730.3.4.5 com.sun.jndi.ldap.ctl.
PasswordExpiringResponseControl

-

Proxied Authorization 2.16.840.1.113730.3.4.18 com.sun.jndi.ldap.ctl.
ProxiedAuthorizationControl

-

Real Attributes Only 2.16.840.1.113730.3.4.17 com.sun.jndi.ldap.ctl.
RealAttributesOnlyControl

-

Server-side Sorting 1.2.840.113556.1.4.473 com.sun.jndi.ldap.ctl.SortControljavax.naming.ldap.
SortControl

Simple Paged Results 1.2.840.113556.1.4.319 com.sun.jndi.ldap.ctl.
PagedResultsControl

javax.naming.ldap.
PagedResultsControl

Tree Delete 1.2.840.113556.1.4.805 com.sun.jndi.ldap.ctl.
TreeDeleteControl

-

Virtual Attributes Only 2.16.840.1.113730.3.4.19 com.sun.jndi.ldap.ctl.
VirtualAttributesOnlyControl

-

Virtual List View 2.16.840.1.113730.3.4.9 com.sun.jndi.ldap.ctl.
VirtualListViewControl

-

The table provides links to the javadoc pages for the J2SE implementations. For the
two searching-related controls mentioned above, the javadoc contains code snippets
for their usage. Examples for "Server-side Sorting" and "Manage DSAIT" are also
contained in the JNDI Tutorial. The rest of this article focuses on "Password Policy",
which is functionality specific to IBM Tivoli Directory Server, from which one can
also benefit with the help of an LDAP control. Note "Password Policy" is missing in
the table above. "Password Expired" and "Password Expiring" are distinct controls
and are not supported by IBM Tivoli Directory Server. However their functionality is
covered by "Password Policy".

Password policy in IBM Tivoli Directory Server

Passwords play an important role in IT security. In order to protect them better it is
quite common that users are prevented by the system administration from choosing
weak passwords. Passwords are required to have a certain complexity (e.g. minimum
length or mixture of letters, numbers and special characters). In addition users are
often forced to change their passwords periodically (e.g. at least every three months),
and prevented from reusing recently used passwords ("password history"). After a
certain number of failed authentication attempts, an account may be locked by the
system.

http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/ManageReferralControl.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/ManageReferralControl.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/SortControl.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/SortControl.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/PagedResultsControl.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/ldap/PagedResultsControl.html
http://java.sun.com/products/jndi/tutorial/

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 10 of 25

In many cases directories are used as user registries, which usually implies the
storage of passwords. IBM Tivoli Directory Server supports a password policy
allowing the flexible customization of rules regarding password security. Among the
features are

• Enforcing password syntax rules
• Maintaning a password history for each user
• Locking an account after a sequence of unsuccessful bind attempts
• Encryption of stored passwords

Configuration of Password Policy in Tivoli Directory Server

There are two options to configure password policy:

• Interactive (Tivoli Directory Server Web Administration Tool)
• Command line (creation of an LDIF file)

Figure 2 shows the form of the webbased administration tool to maintain password
validation properties (password syntax rules). Among these are the length of the
password history (4 in this case), the minumum length of a password (8) and the
character mix. Further changes are possible in the "Password policy" and the
"Password lockout" screens. Detailed information about this tool is included in the
product documentation.

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/admin_gd11.htm

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 11 of 25

Figure 2. Configuring password policies within the Web Administration Tool

The second configuration option is the creation of an LDIF file with modifications
(LDIF stands for LDAP Data Interchange Format, the format is defined in RFC
2849, which also contains examples) followed by its application to the server via
the command line tool ldapmodify. Listing 6 displays such a configuration file. The
settings for password policies are stored in the special entry "CN=PWDPOLICY".
The LDIF file contains several modifications of its attribute values, some of them
corresponding to those in Figure 2. There are various other attributes available
for fine-grained customization, described in the product documentation (IBM Tivoli
Directory Server Administration Guide, chapter Securing the directory).

http://www.ietf.org/rfc/rfc2849.txt
http://www.ietf.org/rfc/rfc2849.txt
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/admin_gd30.htm
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/admin_gd16.htm

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 12 of 25

Listing 6. An LDIF file for password policy configuration

dn: CN=PWDPOLICY
changetype: modify
replace: ibm-pwdpolicy
ibm-pwdpolicy: true
-
replace: pwdchecksyntax
pwdchecksyntax: 2
-
replace: pwdMustChange
pwdMustChange: false
-
replace: pwdinhistory
pwdinhistory: 4
-
replace: pwdminlength
pwdminlength: 8
-
replace: passwordminalphachars
passwordminalphachars: 1
-
replace: passwordminotherchars
passwordminotherchars: 1
-
maximum password age in seconds (90 days)
replace: pwdmaxage
pwdmaxage: 7776000

Listing 7 presents a command line call to apply the configuration to the server.
Subsequent to the configuration of the password policies an easy way to
demonstrate their effect are the client command line tools, which are included in the
IBM Tivoli Directory Server package.

Listing 7. Applying the configuration to the server

$ ldapmodify -D cn=root -w ? -f enablePwdPolicy.ldif
Enter password ==>
modifying entry CN=PWDPOLICY

Testing the configuration via command line

Listing 8 displays some calls for a normal user with DN "cn=Stefan
Zoerner,dc=example,dc=com" and password "Start001" (command line options -D
and -w). Note that it does not make sense to employ a user with administrative rights
in this example (e.g. "cn=root"), because the password policies don't apply for such
users (i.e. he/she may set any password to an arbitrary value). IBM Tivoli Directory
Server 6.0 allows specifying a separate password policy for administrative IDs

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 13 of 25

Listing 8. Demonstration of password policy capabilities with command line
tools
$ ldapsearch -D "cn=Stefan Zoerner,dc=example,dc=com"
 -w Start001 -s base (objectclass=*) port
ldap_simple_bind: Warning, time before expiration is 404011
port=389

$ ldapchangepwd -D "cn=Stefan Zoerner,dc=example,dc=com" -w Start001 -n My1Secret
ldap_simple_bind: Warning, time before expiration is 403966
changing password for entry cn=Stefan Zoerner,dc=example,dc=com

$ ldapchangepwd -D "cn=Stefan Zoerner,dc=example,dc=com" -w My1Secret -n 1234567
changing password for entry cn=Stefan Zoerner,dc=example,dc=com
Constraint violation --- Error, Password too short

$ ldapchangepwd -D "cn=Stefan Zoerner,dc=example,dc=com" -w My1Secret -n Start001
changing password for entry cn=Stefan Zoerner,dc=example,dc=com
Constraint violation --- Error, Password in History

ASN.1 and BER
ASN.1 (Abstract Syntax Notation One) is a common notation for describing
abstract types and values. The specific data of an LDAP request and/or
response control is normally defined in this notation (see Listing 9 for an
example).

BER (Basic Encoding Rules for ASN.1) is a set of rules for representing
ASN.1 objects as octet strings. The getEncodedValue method of a JNDI
Control returns the value encoded like this as a byte array.

Unfortunately, Java does not provide direct support for encoding and
decoding BER, but there a several class libraries availabe for this task.
See the Resources for more information on ASN.1, BER and related Java
technologies.

The first call is a simple, non-anonymous search request. During authentication
(bind) the server provides a warning, saying that the password of the user will
expire in approximately five days (404011 seconds). The same warning appears
during the second operation, which successfully changes the password to the new
value "My1Secret" via the command line tool ldapchangepwd. After that, the listing
contains two unsuccessful attempts to change the password of the user to the values
"1234567" and "Start001" respectively. The first value is too short (7 characters
instead of 8 or more), while the second one repeats a value from the password
history.

The Password Policy Control
IBM Tivoli Directory Servers uses a control in conjunction with password policy
functionality. The OID of the control is "1.3.6.1.4.1.42.2.27.8.5.1". The request control
does not have any custom data (it includes OID and critical option only). It is sent
along with a request (e.g. bind, search) to demand the corresponding response
control in addition to the result from the server. The response control value contains
the relevant information. The control has already been silently used in the command
line examples in Listing 8 to carry errors and warnings from the server to the client
(the program ldapchangepwd or ldapsearch respectively).

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/admin_gd30.htm

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 14 of 25

Listing 9 contains the syntax definition of the response control value in ASN.1
notation (see sidebar "ASN.1 and BER"). It is taken from Appendix F of "IBM
Directory Server C-Client SDK Programming Reference," which contains the syntax
definitions for all controls supported by IBM Tivoli Directory Server. The response of
Password Policy is a sequence of two optional elements, the warning and the error
part. Normally only one of them is present, but in certain circumstances both are
present. An empty sequence indicates that no error or warning occurred.

Listing 9. Password Policy: Syntax defintion of response control value in
ASN.1

PasswordPolicyResponseValue ::= SEQUENCE {
 warning [0] CHOICE OPTIONAL {
 timeBeforeExpiration [0] INTEGER (0 .. maxInt),
 graceLoginsRemaining [1] INTEGER (0 .. maxInt)
 }
 error [1] ENUMERATED OPTIONAL {
 passwordExpired (0),
 accountLocked (1),
 changeAfterReset (2),
 passwordModNotAllowed (3),
 mustSupplyOldPassword (4),
 invalidPasswordSyntax (5),
 passwordTooShort (6),
 passwordTooYoung (7),
 passwordInHistory (8)
 }
}

The warning part contains either the number of seconds until the user's password will
expire (timeBeforeExpiration), or the number of times the server is willing to tolerate
the use of the expired password (graceLoginsRemaining). The error part contains a
value between 0 and 8 to denote the specific error situation. Table 3 briefly explains
their meaning.

http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/progref15.htm

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 15 of 25

Table 3. Error Codes of Password Policy Response Control

Value Name Meaning

0 passwordExpired The password is expired, i.e. its age
exceeded the maximum configured
in attribute pwdmaxage of the
"CN=PWDPOLICY" entry.

1 accountLocked The account is locked due
to consecutive unsuccessful
logon attempts (fine-grained
configuration possible with attributes
pwdLockout, pwdMaxFailure,
pwdFailureCountInterval and
pwdLockoutDuration).

2 changeAfterReset The password must be changed by
the user in order to perform arbitrary
operations (she/he is allowed to
bind and modify her/his password).
Configuration is done via attribute
pwdMustChange.

3 passwordModNotAllowed The user is not allowed to change
his/her password (attribute
pwdAllowUserChange).

4 mustSupplyOldPassword The old password must be sent along
with the new one to modify it (attribute
pwdSafeModify).

5 invalidPasswordSyntax The quality of the password is
insufficient, i.e. it does not adhere
to the configured syntax rules
(attributes passwordMinAlphaChars,
passwordMinOtherChars and
passwordMaxRepeatedChars)

6 passwordTooShort The new password is not long enough
with respect to attribute pwdMinLength.

7 passwordTooYoung The minimum time between password
changes (attribute pwdMinAge)
is violated. This feature is used to
prevent old passwords being reused by
changing the password repeatedly until
the desired value is out of the password
history and can be reused again.

8 passwordInHistory The new password has already been
used. The length of the password
history is configured in attribute
pwdInHistory.

It is clear that using the information returned by the Password Policy Control will
add value. Imagine a web application that uses IBM Tivoli Directory Server as a
user registry. After a successful logon the system may display a warning ("Your
password will expire in 3 days.") and recommend an action ("Would you like to
change it?"). If desired, the system may also present detailed messages in case of an
unsuccessful authentication ("Your account is locked."). During password changes,
it is also possible to give the user hints in case of a failure (see error codes 5-8 in
Table 3.). The client command line tools provided by the product have built-in support

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 16 of 25

(cf. Listing 8) for this information. But how can one benefit from the Password Policy
Control within Java custom application development?

Implementation of Java classes for the password policy
control

Unfortunately, Password Policy is not in the set of controls which are supported by
J2SE 5.0 and the LDAP Booster pack (cf. Table 2). In order to employ it within a Java
component, custom Java classes have to be created. These classes must implement
the corresponding JNDI interfaces. The class diagram in Figure 3 gives an overview
of an implementation of such classes.

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 17 of 25

Figure 3. Overview of the implementation

The class PasswordPolicyControl implements javax.naming.ldap.Control. Its
objects are used as request controls, furthermore the class acts as superclass
for PasswordPolicyResponseControl. Because the request control of Password
Policy does not carry along any specific value, the implementation is as simple as
the TreeDeleteControl example (cf. Listing 3). getID returns the corresponding
OID value of the control, getEncodedValue return null. However, unlike the
TreeDeleteControl class, the critical property is configurable (via constructor and
setter).

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 18 of 25

The class PasswordPolicyResponseControl serves as response control and extends
the request control with the control specific data, as defined in Listing 9. This is
accomplished by the attributes timeBeforeExpiration, graceLoginsRemaining and
errorCode, all of which have getters and (protected) setters. getEncodedValue returns
the unchanged value of the response control as byte array, the other getters and
the methods hasError and hasWarning allow convenient access to the state. The
method toString provides a textual representation of the control value. In particular,
it includes the message text for any error code (e.g. "password expired") that might
be present.

The only challenging task within the implementation is the decoding of the
BER encoded value of the response control in order to set the attributes (e.g.
error code). This is done by the class PasswordPolicyControlFactory, which
extends javax.naming.ldap.ControlFactory and therefore integrates in the JNDI
framework. The component will be invoked by the JNDI LDAP service provider
when of a response control is received. Initially, the response control contains
only the BER encoded data. The control factory decides whether it would like
to transform the control object into a more specific object. This is done by the
method getControlInstance, which is invoked with the original response control as
parameter (see Listing 10). First it checks whether the OID of the passed control
matches with the one from Password Policy Control. If not, the method returns
null and signals that the factory is not responsible for this control (in this case
the service provider calls other control factories). Otherwise an object of class
PasswordPolicyResponseControl is created.

Listing 10. Fragment of class PasswordPolicyControlFactory
package dw.samples.ldapcontrols;

import java.io.ByteArrayInputStream;
import java.io.IOException;

import javax.naming.ldap.Control;
import javax.naming.ldap.ControlFactory;

import netscape.ldap.ber.stream.*;

public class PasswordPolicyControlFactory extends ControlFactory {

 public Control getControlInstance(Control ctl) {
 Control result = null;

 if (ctl.getID().equals(PasswordPolicyControl.OID)) {
 try {
 PasswordPolicyResponseControl rctl =
 new PasswordPolicyResponseControl();
 if (ctl.getEncodedValue() != null) {
 rctl.setEncodedValue(ctl.getEncodedValue());
 int[] bread = { 0 };
 BERSequence seq = (BERSequence)
 BERElement.getElement(new SpecificTagDecoder(),
 new ByteArrayInputStream(ctl.getEncodedValue()), bread);

 for (int i = 0; i < seq.size(); i++) {
 handleSequenceElement(seq.elementAt(i), rctl);
 }

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 19 of 25

 }
 result = rctl;
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 return result;
 }

 protected void handleSequenceElement(BERElement element,
 PasswordPolicyResponseControl target) {
 // ... (omitted)
 }
}

If the control object passed to the factory method contains control specific data
(getEncodedValue() is not null), the byte array must be decoded. This is best
done using a class library, since the J2SE does not provide the functionality, and
implementation from scratch would be costly and error-prone. Some alternatives for
this purpose are listed in the resources at the end of the article. When choosing the
library please check whether it is appropriate for your application (license, maturity).
IBM Tivoli Directory Server ships with its own BER package ("IBMLDAPJavaBer.jar")
which is unfortunately not officially supported for external use. The sample code
also includes a control factory which uses this package (see download, file
PasswordPolicyControlFactoryIbmBer.java).

The example implementation presented here uses Netscape Directory SDK for
Java, which provides suitable classes in package netscape.ldap.ber.stream.
In order to decode data, a subclass of BERTagDecoder must be implemented
(SpecificTagDecoder). The actual decomposing according to the ASN.1 definition
(Listing 9) occurs primarily in the method handleSequenceElement. This method
inspects an individual sequence element, determines whether it is an error or a
warning, interprets the data, and assigns the results to the created control object
(parameter target). Due to space limitations, details are omitted, but the complete
source code is available for download. Please note that in order to compile and run
the example the jar file "ldapjdk.jar" from the Netscape Directory SDK for Java is
needed.

Demonstration of functionality
Listing 11 shows the use of the control classes implemented above within a Java
component (a class with main method in this case). Within the sample code a
user with DN "cn=Stefan Zoerner,dc=example,dc=com" logs on to the system
and tries to change his/her password several times. In order to benefit from the
Password Policy Control two things have to be done. First a request control has
to be created and sent along with the requests. This is done by assigning an array
containing the control object to the context (see creation of InitialLdapContext
and method (setRequestControls). Second, the control factory has to be declared
within the JNDI settings in order to transform response controls for the Password
Policy Control to PasswordPolicyResponseControl objects. A special JNDI property
(LdapContext.CONTROL_FACTORIES, the value is "java.naming.factory.control") is used

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 20 of 25

for that. The value of the property may contain several control factories as a colon-
separated list. For the LDAP Booster Pack control classes in Table 2, an appropriate
factory exists within the same package.

The method handleResponseControls in the example just iterates over the response
controls it finds, and prints them out. Due to a verbose toString method within the
PasswordPolicyResponseControl class, the relevant information is visible on the
console (see Listing 12).

Listing 11. Sample code that uses the Control class

package dw.samples.ldapcontrols;

import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.DirContext;
import javax.naming.directory.ModificationItem;
import javax.naming.ldap.Control;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.ldap.LdapContext;

public class TestSetPassword {

 public static final String USER_DN = "cn=Stefan Zoerner,dc=example,dc=com";
 public static final String USER_PWD = "Start001";

 public static void main(String[] args) throws NamingException {

 Control[] rctls = { new PasswordPolicyControl(true) };

 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL, "ldap://magritte:389/dc=example,dc=com");
 env.put(Context.SECURITY_PRINCIPAL, USER_DN);
 env.put(Context.SECURITY_CREDENTIALS, USER_PWD);

 env.put(LdapContext.CONTROL_FACTORIES,
 "dw.samples.ldapcontrols.PasswordPolicyControlFactory");

 System.out.println("logon on with DN " + USER_DN);
 LdapContext ctx = new InitialLdapContext(env, rctls);
 handleResponseControls(ctx);

 String[] passwords = new String[] {
 "My1Secret",
 "abc001", // too short
 "01234567", // numbers only
 USER_PWD // current password

 };

 ctx.setRequestControls(rctls);
 for (int i = 0; i < passwords.length; i++) {
 ModificationItem replacePw = new ModificationItem(
 DirContext.REPLACE_ATTRIBUTE, new BasicAttribute(
 "userPassword", passwords[i]));

 try {
 System.out.println("Try to set password to ["

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 21 of 25

 + passwords[i] + "]");
 ctx.modifyAttributes("cn=Stefan Zoerner",
 new ModificationItem[] { replacePw });
 } catch (NamingException ne) {
 System.out.println(ne);
 }
 handleResponseControls(ctx);
 }

 }

 public static void handleResponseControls(LdapContext ctx)
 throws NamingException {

 Control[] ctls = ctx.getResponseControls();
 for (int j = 0; ctls != null && j < ctls.length; j++) {
 System.out.println(ctls[j]);
 }
 }
}

Listing 12 contains a sample output for the program in Listing 11. Results of the
toString method of the PasswordPolicyResponseControl are highlighted. Of course
it would also be possible to react to the response controls other than just printing out
the message. After casting to the concrete type, the getters offer convenient access
to attributes like errorCode or timeBeforeExpiration.

Listing 12. Sample output for Listing 11
logon on with DN cn=Stefan Zoerner,dc=example,dc=com
PasswordPolicyResponseControl,
warning: time before expiration is 431981
Try to set password to [My1Secret]
PasswordPolicyResponseControl (no error, no warning)
Try to set password to [abc001]
javax.naming.directory.InvalidAttributeValueException:
[LDAP: error code 19 - Constraint Violation]; remaining name 'cn=Stefan Zoerner'
PasswordPolicyResponseControl, error: password too short
Try to set password to [01234567]
javax.naming.directory.InvalidAttributeValueException:
[LDAP: error code 19 - Constraint Violation]; remaining name 'cn=Stefan Zoerner'
PasswordPolicyResponseControl, error: invalid password syntax
Try to set password to [Start001]
javax.naming.directory.InvalidAttributeValueException:
[LDAP: error code 19 - Constraint Violation]; remaining name 'cn=Stefan Zoerner'
PasswordPolicyResponseControl, error: password in history

If an LDAP bind operation should be performed by the construction of an
InitialLdapContext (e.g. to implement logon functionality), and this creation fails,
there is no way to examine the response controls. An exception is thrown, and there
is no context object available to invoke getResponseControls. It is not possible in
this situation to learn from a Password Policy Control that the account used for
the bind is locked. One option is to bind anonymously (or with a technical user)
first, and afterward use the context obtained by this call to rebind with the actual
credentials. When the request control for Password Policy is set before the rebind,
the corresponding response control is available after catching possible exceptions.
The download code contains an example (file "FailedBindWithControls.java").
Unfortunately, this workaround is not always applicable.

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 22 of 25

Conclusion

In this article some interesting LDAP extensions provided by IBM Tivoli Directory
Server with the help of controls were introduced. It was demonstrated how they can
be used from Java/JNDI. An existing package (LDAP Booster Pack) and standard
components (J2SE 5.0) as well as custom application development methods were
presented. An area needing particular attention is the encoding and decoding of
control specific data (ASN.1 BER), which was done in the last example in order to
interpret the response control value. Because most LDAP controls use this type of
encoding for their payload, the example can also be used as a blueprint for other
controls with custom data that must be integrated with a JNDI program. Applying the
final example (Password Policy Control) in an application which uses Tivoli Directory
Server for authentication can provide a better user experience.

Acknowledgements

The author would like to thank Manuel Burckas, Mark McConaughy, Philipp Schoepf,
Jason Todoroff, Stephan Waespe and Julius for providing feedback, contributing their
ideas and reviewing this article.

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 23 of 25

Downloads

Description Name Size Download
method

Java source code of listings t-controlSamples.zip 10 KB HTTP

Information about download methods

http://public.dhe.ibm.com/software/dw/library/t-controlSamples.zip
http://www.ibm.com/developerworks/library/whichmethod.html

developerWorks® ibm.com/developerWorks/

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 24 of 25

Resources
• IBM Tivoli Directory Server is a powerful, security-rich and standards-compliant

enterprise directory for corporate intranets and the Internet.
• Understanding LDAP - Design and Implementation, an IBM Redbook, provides

an introduction to LDAP and an overview on IBM Tivoli Directory server.
• The IBM Tivoli Directory Server Documentation offers detailed information about

the product.
• The JNDI Tutorial by Sun Microsystems contains information about accessing

LDAP servers with JNDI as well as examples for the usage of LDAP controls.
• At the JNDI Product Page the JNDI/LDAP Booster Pack, which contains specific

classes for controls, is avalaible for download.
• In his note A Layman's Guide to a Subset of ASN.1, BER, and DER Burton

Kaliski gives an introduction to ASN.1 and BER.
• The Apache Directory Project started a subproject for encoding and decoding

ASN.1 data structures in Java.
• The Netscape Directory SDK for Java also contains classes for encoding and

decoding of BER data. Its source code is now available at the Mozilla Directory
SDK project, Sun Microsystems offers binary distributions for download (Sun
ONE Directory SDK for Java 4.1).

• Another Option is the Novell Developer Kit (LDAP Classes for Java, aka
JLDAP) which provides Java classes for ASN.1 and BER en-/decoding as well.
Source code of this package is available through the OpenLDAP project.

• This technote describes the operational attributes for password policy in IBM
Tivoli Directory Server 5.1 and 5.2.

http://www.ibm.com/software/tivoli/products/directory-server/
http://www.redbooks.ibm.com/abstracts/sg244986.html?Open
http://publib.boulder.ibm.com/infocenter/tiv2help/index.jsp?topic=/com.ibm.IBMDS.doc/welcome.htm
http://java.sun.com/products/jndi/tutorial/
http://java.sun.com/products/jndi/
http://luca.ntop.org/Teaching/Appunti/asn1.html
http://directory.apache.org/
http://www.mozilla.org/directory/
http://www.mozilla.org/directory/
http://www.sun.com/download/
http://developer.novell.com/ndk/jldap.htm
http://www.openldap.org/
http://www.ibm.com/support/docview.wss?uid=swg21179419

ibm.com/developerWorks/ developerWorks®

Take advantage of IBM Tivoli Directory Server's LDAP
Controls via Java and JNDI

Page 25 of 25

About the author

Stefan Zoerner

Stefan Zoerner is an Advisory IT Architect at IBM e-business Innovation
Center in Hamburg, Germany. Since 1996, he has been occupied
intensively with Java technologies. In 2004, Stefan published a German
LDAP book for Java developers. Currently he uses IBM Tivoli Directory
Server in a portal development project.

© Copyright IBM Corporation 2005
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.entwickler.com/buecher/ldap/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introduction
	Using LDAP Controls
	Controls supported by IBM Tivoli Directory Server
	Table 1. Selected controls supported by IBM Tivoli Directory Server

	Controls in the Java Naming and Directory Interface
	An Example: Tree Delete Control
	Do we lose portability?

	Using Control classes provided by Sun's JNDI Provider
	JNDI/LDAP Booster Pack and J2SE 5.0 (Tiger)
	Table 2. Overview of controls and control classes within Booster Pack and J2SE

	Password policy in IBM Tivoli Directory Server
	Configuration of Password Policy in Tivoli Directory Server
	Testing the configuration via command line
	The Password Policy Control
	Table 3. Error Codes of Password Policy Response Control

	Implementation of Java classes for the password policy control
	Demonstration of functionality

	Conclusion
	Acknowledgements
	Downloads
	Resources
	About the author

